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Abstract

Atrial fibrillation (AF) is a common heart condition af-
fecting the elderly population and is a significant risk fac-
tor for strokes, making it a growing public health concern.
Catheter ablation (CA) is the most effective long-term
treatment for persistent AF. Recently, a novel CA approach
based on spatiotemporal dispersion (STD) has been pro-
posed. This technique targets STD patterns associated
with active zones responsible for sustaining the arrhyth-
mia. We present three datasets to be used to train and test
different machine learning models in automatically identi-
fying STD patterns from multipolar electrograms (EGM).
Two different real dataset have been acquired from Nice
Pasteur University Hospital and labelled by experts. To
address the challenging scenario presented by the real
data, a synthetic dataset has been created generating EGM
records resembling real-world scenarios, using openCARP
cardiac electrophysiology simulation software. We eval-
uate 13 machine learning techniques to demonstrate the
challenging scenario of the real data, and we analyze their
performance in the proposed datasets. Results show that
the synthetic data are promising as training set for classi-
fiers evaluated on real data, but a deeper statistical analy-
sis is necessary to confirm these findings.

1. Introduction

Atrial fibrillation (AF) is a common irregular heart
rhythm that primarily affects the elderly population and is a
major cause of stroke. As the population continues to age,
AF is becoming a significant public health concern [1]. To
improve the understanding and management of this com-
plex condition, physiological signal analysis and machine
learning techniques are being used. Catheter ablation (CA)
is currently the most effective long-term treatment for per-
sistent AF, but its success rates may vary [2]. Although an
increasingly larger number of patients are eligible for CA,

Computing in Cardiology 2023; Vol 50

the optimal ablation strategy for persistent AF remains elu-
sive. Some past studies, based on the visual selection of
target electrograms (EGMs), have suggested that applying
lesions targeting complex fractionated atrial electrograms
(CFAE) is beneficial to patients with persistent AF [3].
CA based on spatiotemporal dispersion (STD) has been
recently proposed to treat persistent AF effectively based
on the Pentaray multielectrode mapping catheter (Biosense
Webster Inc., Irvine, CA, USA). STD patterns are thought
to be associated with active zones sustaining arrhythmia,
and are targets for successful ablation [4]. STD areas are
defined as clusters of EGMs, either fractionated or non-
fractionated, that display interelectrode time and space dis-
persion at a minimum of two adjacent bipoles such that
activation spreads over > 70% of the AF cycle length.
STD patterns are identified visually by the interventional
cardiologist following those rules. The manual classifi-
cation of the signals represents a substantial limitation to
the standardization of EGM-based approaches with large
operator differences in experience and learning curve pro-
files [3]. Also the communication between the cardiologist
performing the intervention and the software engineer an-
notating the data in the recording system is a challenging
step, which unavoidably produces errors in the annotation
process, and consequently in the data labels. Another im-
portant limitation concerns the strong imbalance between
the two classes in the available datasets, STD patterns do
not occur as often as non STD.

In the literature, a technical performance analysis of
novel machine learning (ML) models trained to automat-
ically classify STD patterns (such as VX1 software from
Volta medical [3]) is missing. In this context we present an
automatic classification analysis in two real datasets and
a synthetic one. The first contains raw data from Nice
Pasteur University Hospital (CHU). The second one is a
curated version of the first. The third dataset is synthetic.
The objective of using different datasets is to help in the as-
sessment of machine learning models, trained on multipo-
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lar EGMs for automatically locating STD patterns. In fact,
the models are trained and validated in different configura-
tions of the raw, curated and synthetic data. The final end
would be providing operators with an automatic labelling
tool that identifies the presence or absence of STDs as a
support for the human based procedure.

This study relies on multiparametric ML algorithms
trained on annotated signals from intracardiac EGMs and
tested on the mentioned different data configurations. In
a further step, those models are expected to support inter-
ventional cardiologists, helping EGMs interpretation and
guiding CA procedures based on STD pattern identifica-
tion.

2. Datasets

2.1. Real datasets

In this study, we consider two different real dataset ac-
quired from the Cardiology Department of Nice Pasteur
CHU using the 10-pole Pentaray mapping catheter. Each
sample in the raw dataset consists of 10 time series with
2500 timesteps each, acquired from 53 persistent AF pa-
tients. The raw dataset sometimes presents wrong labels,
due to communication delays in the annotation procedure
between the cardiologist and the software engineer. The
curated dataset comprises only a subset of samples revis-
ited and relabeled after the intervention (offline) by the
same specialist. This solved the delay in the annotation
procedure during the ablation procedure using the Carto
software.

2.2.  Synthetic data generation

The use of synthetic data is the answer to many prob-
lems encountered by experts in our domain [5]. In partic-
ular, the STD classification, the interoperator subjectivity,
the lack of a precise labelling protocol, the annotation pro-
cedure, i.e., communication delay between doctors and en-
gineers during the intervention, are challenging. Other is-
sues are related to privacy, anonimization and security, and
not last the amount of curated data. It is difficult to find
clinicians to label and check the annotation of real data.

In order to generate realistic synthetic multipolar EGMs,
tissue patches of the heart were generated by computer
simulations. Ionic current and conductivity parameters
were set to create fibrosis in the simulated heart tissue,
leading to rotor-like propagation patterns linked to STD
behavior. The fibrotic, scar and normal tissue patterns were
simulated by three different cell types based on the Courte-
manche model [6] with variations in the ionic charges. The
fibrotic patterns were created using clustering algorithms
designed to generate block regions with specific conduc-
tivity and cell types. An example of the resulting activa-

Figure 1. An example conductivity map is shown. The
different colors represent different cell types and differ-
ent conductivity values. Yellow regions represent Courte-
manche ionic model with low conductivity, which mim-
ics scar tissue. Green regions represent Courtemanche
ionic model with medium conductivity, which mimics fi-
brotic tissue but differs from scars. Purple regions rep-
resent Courtemanche ionic model with high conductivity,
which mimics normal tissue.

tion map is shown in Figure 1. Each tissue patch mea-
sures 273 by 273 pixels (6.7 by 6.7 cm), matching the real
scaling. Using the openCARP cardiac electrophysiology
simulation software!, realistic 10-lead EGM records were
synthesized from the tissue patches, simulating the Pen-
taray multipolar catheter.

The advantages provided by the synthetic data gener-
ation process are manyfold. It is possible to change the
degree of fibrosis and electrical conductivity by modifying
the tissue patch generation parameters. The catheter posi-
tion can be moved around in the synthetic tissue, and the
signal is then recorded.

We considered five different catheter positions in a tis-
sue patch, because in real life scenarios, during CA inter-
ventions, cardiologists do not consider very small rotations
or movements of the sensor from one recording position to
another. It would be time consuming and the information
recorded would not change much. From each catheter po-
sition per patch we recorded the 10-lead EGMs. We set the
length of the signal recordings to 2.5 seconds to be consis-
tent with the real data annotation procedure performed at
Nice Pasteur CHU’s Cardiology Department using Carto
software. An example of the simulated catheter on the tis-
sue patch is presented in Figure 2, where the sensor poles
have life-size dimension (radius equal to 0.1 cm). At that
stage, we were able to produce a synthetic dataset of mul-
tipolar EGM samples from synthetic signal recordings. It
was built considering 37 different synthetic patients. The
cardinality of the dataset opens new perspective concern-
ing the kind of Al methods that can be applied.

Ihttps://opencarp.org
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Figure 2. The green dots highlight each pole of the virtual
Pentaray multipolar catheter sensor on the simulated tis-
sue. There are five branches and 20 poles, generating ten
bipolar leads.

Finally, Table 1 presents the different configurations in
terms of number of samples per class. By the term sample
we mean a 2.5 s recording of ten EGM signals acquired
from ten bipolar electrodes, one signal per lead.

Table 1. Datasets cardinality

Dataset | Patients | Samples | STD | non STD
raw 53 13888 1035 12853
curated 53 430 112 318
synthetic 37 64680 | 32340 32340
3. Classification approaches

In our approach to detect STD patterns, we employed
a diverse set of features and classifiers. For classical ma-
chine learning classifiers, our feature set included voltage-
based features. We computed the average of the mean,
standard deviation, maximum, and minimum values for
each lead in the raw signal. Furthermore, we derived the
maximum value across all leads. For the convolutional
neural networks (CNN), the 10 leads of the raw signal are
treated as an image. Regarding the classification step, we
explored 11 different classical techniques, and two neu-
ral networks. The classical ML techniques include Ran-
dom Forest, Support Vector Machines, Logistic Regres-
sion, Decision Trees, K Neighbors, Gaussian Naive Bayes
(GaussNB), Gradient Boosting, Extreme Gradient Boost-
ing (XGB), Ridge, Multi-Layer Perceptron, and AdaBoost.

For the CNN, we normalized each lead to have unit L2
norm. Prior to the convolutional layer, we subjected the
raw signal to average pooling with a 1x2 pool size. The
core of the network comprised a single convolutional layer
employing a 3x75 kernel to also capture temporal depen-
dencies between leads. Subsequently, we applied average

pooling with a 2x110 window. This was followed by one
dense hidden layer with 4 units. The first model consists
of 395 parameters, representing less than 1/10 of the num-
ber of training samples in the raw dataset. In the second
network we added one more kernel in the convolutional
layer and four more within the hidden layer. This second
model included 1109 parameters. It was expected to better
accommodate a higher amount of data from the synthetic
dataset.

4. Training and evaluation methodology

In our methodology, we followed a structured approach
for training and evaluation. The experiments were per-
formed in the following configurations, for both classical
ML methods and CNN approaches:

o train on the raw dataset, test on the curated dataset;
« train and test on the synthetic dataset;
« train on the synthetic dataset, test on the curated dataset.

In all cases, splits of training and test set were patient
aware. For the classical ML approaches, we adopted a
nested cross-validation strategy to determine the optimal
algorithm among classical machine learning algorithms.
An inner loop with two-fold cross-validation was com-
bined with a two-fold outer loop. In the inner loop,
we conducted a grid-search procedure, exploring classical
hyperparameter values for each classifier. Feature scal-
ing and data sampling were also considered. This ap-
proach enabled effective model parameter tuning, ensuring
robustness in performance assessment through the outer
loop. Then, for the CNN, we performed a two-fold cross-
validation procedure with standard hyperparameters as a
learning rate of 0.01 and the Adam optimizer. Given the
model’s relatively small size, explicit regularization was
omitted. To address class imbalance, we employed over-
sampling of the minority class during training. Addition-
ally, we incorporated EarlyStopping to mitigate overfitting
and enhance training efficiency. Finally, our chosen key
performance indicators (KPI) encompassed the F1 score
(F1), accuracy (Acc), area under the roc curve (Auc roc),
positive predictive value (PPV), sensitivity (Sens), speci-
ficity (Spec), and negative predictive value (NPV).

5. Results and discussion

Table 2 presents a summary of the test performances of
the best models, in the different above mentioned config-
urations. For each datasets configuration, we present the
best model in terms of F1 score among the eleven classical
ML methods (lines 1 to 3) and two CNNs (lines 4 to 7)
tested in this work.

From Table 2 we can note the challenging scenario pre-
sented by the curated dataset for all employed methodolo-
gies of classification. It is important to mention that when
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Table 2. Final results of the experiments.

no. Train Test Method F1 score Acc | Aucroc | PPV | Sens | NPV | Spec
1 raw curated | LogisticRegression | 0.419 +0.084 | 0.619 | 0.620 | 0.384 | 0.563 | 0.825 | 0.660
2 | synthetic | synthetic XGB 0.435£0.075 | 0.837 | 0919 | 0.296 | 0.832 | 0.984 | 0.838
3 | synthetic | curated GaussianNB 0.430 £0.028 | 0.365 | 0.604 | 0.281 | 0.919 | 0.858 | 0.170
4 raw curated CNN (#395) 0.430£0.021 | 0.523 | 0.576 | 0.312 | 0.688 | 0.805 | 0.464
5 | synthetic | synthetic CNN (#395) 0.713 £0.197 | 0.946 | 0.928 | 0.649 | 0.825 | 0.986 | 0.955
6 | synthetic | curated CNN (#395) 0.270 +£0.015 | 0.421 | 0.386 | 0.202 | 0.411 | 0.672 | 0.426
7 | synthetic | curated CNN (#1109) 0.415 £0.018 | 0.402 | 0.513 | 0.278 | 0.813 | 0.796 | 0.258

testing with the synthetic data, we resampled the test set
to have the same class imbalance of the real dataset. Also,
the synthetic / curated scenario demanded normalizing the
lead signals to unit L2 norm, since the two dataset have dif-
ferent amplitude values.

When comparing lines 2 and 5, the CNNs take better
advantage of the higher amount of data provided by the
synthetic dataset, especially when a bigger model is em-
ployed in the synthetic / curated scenario (lines 6 and 7).
This opens the possibility of a better tuning of parame-
ters when using convolutional and deep approaches with
the proposed synthetic data. However we must remark the
possible limitations of CNN, like the simplification we ap-
plied to run the experiments. Finally, from lines 1, 3, 4
and 7 we can notice that the synthetic data as a training
dataset was able to provide results in pair with those ob-
tained with the raw dataset. This indicates the synthetic
data can reasonably represent real data, which supports its
use with better tuned parameters. It is important to men-
tion that while all CNN experiments are reproducible, in
order to have more generalized conclusions, a more robust
training procedure must be implemented using the F1 score
to guide the training process in a hyper parameter search
scenario, as done for the classical ML approach.

6. Conclusion

We presented different artificial intelligence based algo-
rithms designed for automatic identification of STD pat-
terns from real and synthetic multipolar EGMs. This study
brings us to a new understanding of the challenging sce-
nario of STD pattern classification. Besides, it shows
that the exploitation of synthetic data can be useful in the
present classification problem. In future work, we will
consider better tuned convolutional and deep models, im-
proving statistical robustness. Additionally, we will extend
the synthetic data to a more realistic 3D model of the heart.
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